Documentation

QEC1.Definitions.Def_11_SpacetimeFaultDistance

Def_11: Spacetime Fault-Distance #

Statement #

The spacetime fault-distance of the fault-tolerant gauging measurement procedure is defined as: $$d_{\text{spacetime}} = \min\{|F| : F \text{ is a spacetime logical fault}\}$$ where $|F|$ denotes the weight of $F$, counted as the total number of:

Intuitively, $d_{\text{spacetime}}$ is the minimum number of independent faults required to cause a logical error without being detected.

Main Definitions #

Key Properties #

Section 1: Set of Logical Fault Weights #

We define the set of weights of all spacetime logical faults. The spacetime fault-distance is the minimum of this set.

def logicalFaultWeights {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) :

The set of weights of spacetime logical faults. W = {|F| : F is a spacetime logical fault}

Equations
Instances For
    def undetectableNonStabilizerWeights {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) :

    The set of weights of all empty-syndrome (undetectable) non-stabilizer faults

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem logicalFaultWeights_eq_undetectableNonStabilizer {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) :
      logicalFaultWeights DC baseOutcomes logicalEffect times = undetectableNonStabilizerWeights DC baseOutcomes logicalEffect times

      The two weight sets are equal by definition of logical fault

      Section 2: Predicate for Existence of Logical Faults #

      def hasLogicalFault {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) :

      Predicate: there exists at least one spacetime logical fault

      Equations
      Instances For
        theorem hasLogicalFault_of_weights_nonempty {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (h : (logicalFaultWeights DC baseOutcomes logicalEffect times).Nonempty) :
        hasLogicalFault DC baseOutcomes logicalEffect

        Nonemptiness of logical fault weights implies existence of logical faults

        theorem weights_nonempty_of_hasLogicalFault {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (h : hasLogicalFault DC baseOutcomes logicalEffect) :
        (logicalFaultWeights DC baseOutcomes logicalEffect times).Nonempty

        Existence of logical faults implies nonemptiness of weights

        Section 3: Spacetime Fault Distance Definition #

        The spacetime fault-distance is the minimum weight of any spacetime logical fault.

        noncomputable def spacetimeFaultDistance {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) :

        The spacetime fault-distance d_ST as a natural number. d_ST = min{|F| : F is a spacetime logical fault}

        If no logical faults exist (which would mean perfect error correction), we return 0 as a sentinel value. In practice, interesting codes always have logical faults, so d_ST > 0.

        We define this using WellFounded.min on the set of logical fault weights.

        Equations
        Instances For

          Section 4: Main Properties #

          theorem spacetimeFaultDistance_le_weight {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (F : SpacetimeFault V E M) (hF : IsSpacetimeLogicalFault DC baseOutcomes logicalEffect F) :
          spacetimeFaultDistance DC baseOutcomes logicalEffect times F.weight times

          The spacetime fault distance is at most the weight of any logical fault

          theorem weight_ge_spacetimeFaultDistance {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (F : SpacetimeFault V E M) (hF : IsSpacetimeLogicalFault DC baseOutcomes logicalEffect F) :
          F.weight times spacetimeFaultDistance DC baseOutcomes logicalEffect times

          The spacetime fault distance is a lower bound: all logical faults have weight ≥ d_ST

          theorem spacetimeFaultDistance_is_min {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (h : hasLogicalFault DC baseOutcomes logicalEffect) :
          ∃ (F : SpacetimeFault V E M), IsSpacetimeLogicalFault DC baseOutcomes logicalEffect F F.weight times = spacetimeFaultDistance DC baseOutcomes logicalEffect times

          If logical faults exist, the minimum is achieved

          theorem spacetimeFaultDistance_zero_of_no_logical {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (h : ¬hasLogicalFault DC baseOutcomes logicalEffect) :
          spacetimeFaultDistance DC baseOutcomes logicalEffect times = 0

          If no logical faults exist, d_ST = 0

          Section 5: Faults Below Distance Cannot Be Logical #

          theorem not_logical_of_weight_lt {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (F : SpacetimeFault V E M) (hF : F.weight times < spacetimeFaultDistance DC baseOutcomes logicalEffect times) :
          ¬IsSpacetimeLogicalFault DC baseOutcomes logicalEffect F

          A fault with weight < d_ST cannot be a logical fault

          theorem detectable_or_stabilizer_if_weight_lt {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (F : SpacetimeFault V E M) (hF : F.weight times < spacetimeFaultDistance DC baseOutcomes logicalEffect times) :
          ¬hasEmptySyndrome DC baseOutcomes F ¬affectsLogicalInfo logicalEffect F

          A fault with weight < d_ST is either detectable or a stabilizer

          Section 6: Characterization of Positive Distance #

          theorem spacetimeFaultDistance_pos_iff {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) :
          0 < spacetimeFaultDistance DC baseOutcomes logicalEffect times hasLogicalFault DC baseOutcomes logicalEffect ∀ (F : SpacetimeFault V E M), IsSpacetimeLogicalFault DC baseOutcomes logicalEffect F0 < F.weight times

          d_ST > 0 iff there exist logical faults and all have positive weight

          Section 7: Helper Lemmas #

          @[simp]
          theorem spacetimeFaultDistance_nonneg {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) :
          0 spacetimeFaultDistance DC baseOutcomes logicalEffect times

          The spacetime fault distance is non-negative

          theorem logicalFaultWeights_bounded_below {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (w : ) :
          w logicalFaultWeights DC baseOutcomes logicalEffect timesspacetimeFaultDistance DC baseOutcomes logicalEffect times w

          Logical fault weights are bounded below by d_ST

          theorem spacetimeFaultDistance_mem_weights {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (h : hasLogicalFault DC baseOutcomes logicalEffect) :
          spacetimeFaultDistance DC baseOutcomes logicalEffect times logicalFaultWeights DC baseOutcomes logicalEffect times

          d_ST ∈ logicalFaultWeights when logical faults exist

          theorem exists_logical_of_exact_distance {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (h : hasLogicalFault DC baseOutcomes logicalEffect) :
          ∃ (F : SpacetimeFault V E M), IsSpacetimeLogicalFault DC baseOutcomes logicalEffect F F.weight times = spacetimeFaultDistance DC baseOutcomes logicalEffect times

          A fault of weight exactly d_ST exists when logical faults exist

          Section 8: Fault Tolerance Threshold #

          A code can tolerate faults of weight t if t < d_ST. This section establishes the relationship between fault tolerance and d_ST.

          def canTolerateFaults {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (t : ) :

          A code can tolerate weight-t faults if t < d_ST

          Equations
          Instances For
            theorem tolerable_implies_correctable {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (t : ) (htol : canTolerateFaults DC baseOutcomes logicalEffect times t) (F : SpacetimeFault V E M) (hF : F.weight times t) :
            ¬hasEmptySyndrome DC baseOutcomes F ¬affectsLogicalInfo logicalEffect F

            If the code can tolerate weight t, any fault of weight ≤ t is correctable or stabilizer

            theorem max_tolerable_weight {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (hpos : 0 < spacetimeFaultDistance DC baseOutcomes logicalEffect times) :
            canTolerateFaults DC baseOutcomes logicalEffect times (spacetimeFaultDistance DC baseOutcomes logicalEffect times - 1)

            The maximum tolerable fault weight is d_ST - 1 (when d_ST > 0)

            Section 9: Intuitive Interpretation #

            The spacetime fault-distance d_ST is the minimum number of independent faults required to cause a logical error without being detected.

            theorem distance_pos_means_nontrivial {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (hpos : 0 < spacetimeFaultDistance DC baseOutcomes logicalEffect times) (F : SpacetimeFault V E M) :
            F.weight times = 0hasEmptySyndrome DC baseOutcomes F¬affectsLogicalInfo logicalEffect F

            If d_ST > 0, weight-0 undetectable faults must be stabilizers

            theorem identity_not_logical {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (h_logical : LogicalEffectIsGroupLike logicalEffect) (_h_base : DC.allSatisfied baseOutcomes) :
            ¬IsSpacetimeLogicalFault DC baseOutcomes logicalEffect 1

            The identity fault has weight 0 and empty syndrome, so it's a stabilizer

            Section 10: Distance as Infimum Characterization #

            Alternative characterization of spacetime fault distance using infimum.

            theorem spacetimeFaultDistance_is_glb {V : Type u_1} {E : Type u_2} {M : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq M] [Fintype V] [Fintype E] [Fintype M] (DC : DetectorCollection V E M) (baseOutcomes : OutcomeAssignment M) (logicalEffect : SpacetimeFault V E MProp) (times : Finset TimeStep) (h : hasLogicalFault DC baseOutcomes logicalEffect) :
            IsGLB (logicalFaultWeights DC baseOutcomes logicalEffect times) (spacetimeFaultDistance DC baseOutcomes logicalEffect times)

            The spacetime fault distance satisfies the infimum property: it's the greatest lower bound of logical fault weights

            Summary #

            This formalization captures the spacetime fault-distance from fault-tolerant quantum error correction:

            1. Logical Fault Weights: The set W = {|F| : F is a spacetime logical fault} where weight counts single-qubit Pauli errors + measurement errors + initialization errors.

            2. Spacetime Fault Distance: d_ST = min(W), the minimum weight of any logical fault. If no logical faults exist, d_ST = 0 as a sentinel value.

            3. Fault Tolerance: Faults with weight < d_ST cannot be logical faults. They are either:

              • Detectable (non-empty syndrome), or
              • Stabilizers (don't affect logical information)
            4. Intuition: d_ST is the minimum number of independent faults required to cause a logical error without being detected.

            Key properties proven: