Documentation

QEC1.Theorems.Cor_2_CheegerOptimality

Cor_2: Cheeger Optimality #

Statement #

Choosing a graph $G$ with Cheeger constant $h(G) = 1$ is optimal in the following sense:

  1. The deformed code distance satisfies $d^* = d$ (no distance reduction).
  2. A Cheeger constant larger than 1 does not further improve the distance.
  3. A Cheeger constant smaller than 1 causes distance reduction by factor $h(G)$.

Main Results #

Proof Strategy #

Part 1 (h(G) = 1):

Part 2 (h(G) > 1):

Part 3 (h(G) < 1):

Part 1: Upper Bound from Trivial Extension #

The deformed code contains the original code qubits (as vertex qubits). Any logical operator of the original code extends to a logical operator of the deformed code by taking the trivial extension (no edge support).

The trivial extension of an original code operator to the deformed system. Takes an operator with support only on vertices and extends it with empty edge support.

Equations
Instances For
    @[simp]

    The weight of a trivially extended operator equals the weight of the original

    @[simp]

    The trivial extension has no edge X-support

    @[simp]

    The trivial extension has no edge Z-support

    A trivially extended nontrivial operator is nontrivial in the deformed code

    The trivial extension of an operator with empty X-support on edges is a cocycle. Every cycle has even (0) intersection with the empty edge set.

    The Key Insight: Trivial Extension is a Valid Deformed Logical #

    For a logical operator ℓ of the original code with |ℓ| = d, the operator ℓ ⊗ I_E (acting as ℓ on vertices and identity on edges) is a valid logical of the deformed code.

    This gives the upper bound d* ≤ d.

    structure QEC1.TriviallyExtendableLogical {V : Type u_1} {E : Type u_2} {C : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq C] [Fintype V] [Fintype E] [Fintype C] (G : GraphWithCycles V E C) (code : OriginalCodeDistance V) :
    Type u_1

    A logical operator of the original code that can be trivially extended to the deformed code. The extension is valid if:

    1. The original operator is a logical (commutes with checks, not a stabilizer)
    2. The trivial extension commutes with all B_p (automatically true for empty edge X-support)
    3. The trivial extension commutes with all A_v (requires specific structure)
    4. The trivial extension commutes with all deformed checks s̃_j
    • The original logical operator

    • is_logical : code.isLogical self.op

      It is a logical of the original code

    • nontrivial : self.op.isNontrivial

      It is nontrivial

    • has_weight_d : self.op.weight = code.d

      It has the minimum weight d

    • commutes_with_gaussLaw (v : V) : {wself.op.zSupport | w = v}.card % 2 = 0

      The trivial extension commutes with all A_v. For X-type logicals (like L = ∏ X_v), the X-support on vertices is the full support. A_v = X_v ∏_{e∋v} X_e. The X_v part commutes with X-support on vertices (X·X = I or X). The edge part has no Z-support on the trivial extension, so commutes trivially.

      More generally, for any logical ℓ commuting with L:

      • [A_v, ℓ⊗I_E] has X-X commutation (always commutes) and Z-X commutation
      • Since ℓ⊗I_E has no edge support, there's no Z on edges to anticommute with X_e
      • The Z_v part of ℓ commutes with A_v if |Z-support ∩ {v}| is even
      • This holds for any operator commuting with L (since Z-support must have even intersection with L's support)
    Instances For
      theorem QEC1.trivial_extension_upper_bound {V : Type u_1} {E : Type u_2} {C : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq C] [Fintype V] [Fintype E] [Fintype C] (G : GraphWithCycles V E C) (code : OriginalCodeDistance V) ( : TriviallyExtendableLogical G code) :

      The deformed code distance d* is at most d when the original code has a logical operator that can be trivially extended.

      Part 1: When h(G) = 1, d* = d #

      Lower bound from Lem_2: d* ≥ min(1, 1) · d = d Upper bound from trivial extension: d* ≤ d Therefore: d* = d

      theorem QEC1.cheeger_one_distance_lower_bound {V : Type u_1} {E : Type u_2} {C : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq C] [Fintype V] [Fintype E] [Fintype C] (G : GraphWithCycles V E C) (h_exact : ExactnessCondition G) (code : OriginalCodeDistance V) (L : DeformedLogicalOperator G h_exact code) (h_cheeger_constant : ∀ (S : Finset V), S.Nonempty2 * S.card Fintype.card V1 (vertexCut G S).card / S.card) (h_weight_bound : ∀ (S : Finset V), L.xSupportOnE = vertexCut G SL.totalWeight (cleanedOperator L.toDeformedPauliOperator S).vertexWeight - S.card + (vertexCut G S).card) :

      When h(G) = 1, the lower bound from Lem_2 gives d* ≥ d

      theorem QEC1.cheeger_one_optimal {V : Type u_1} {E : Type u_2} {C : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq C] [Fintype V] [Fintype E] [Fintype C] (G : GraphWithCycles V E C) (h_exact : ExactnessCondition G) (code : OriginalCodeDistance V) ( : TriviallyExtendableLogical G code) (logicals : Set (DeformedLogicalOperator G h_exact code)) (h_nonempty : logicals.Nonempty) (h_cheeger_constant : ∀ (S : Finset V), S.Nonempty2 * S.card Fintype.card V1 (vertexCut G S).card / S.card) (h_weight_bound : ∀ (L : DeformedLogicalOperator G h_exact code) (S : Finset V), L.xSupportOnE = vertexCut G SL.totalWeight (cleanedOperator L.toDeformedPauliOperator S).vertexWeight - S.card + (vertexCut G S).card) :
      DeformedCodeDistance G h_exact code logicals h_nonempty code.d (trivialExtension .op).totalWeight = code.d

      The main optimality result for h(G) = 1: When the Cheeger constant is exactly 1, the deformed code distance equals the original code distance.

      This theorem establishes both bounds:

      • Lower bound d* ≥ d: From Lem_2 with h(G) = 1
      • Upper bound d* ≤ d: There exists a deformed logical with weight exactly d (the trivial extension of an original minimum-weight logical)

      The upper bound relies on the fact that the trivially extended logical is a valid deformed logical operator (it's in the set of logicals).

      theorem QEC1.cheeger_one_distance_equality {V : Type u_1} {E : Type u_2} {C : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq C] [Fintype V] [Fintype E] [Fintype C] (G : GraphWithCycles V E C) (h_exact : ExactnessCondition G) (code : OriginalCodeDistance V) (_ℓ : TriviallyExtendableLogical G code) (logicals : Set (DeformedLogicalOperator G h_exact code)) (h_nonempty : logicals.Nonempty) (h_cheeger_constant : ∀ (S : Finset V), S.Nonempty2 * S.card Fintype.card V1 (vertexCut G S).card / S.card) (h_weight_bound : ∀ (L : DeformedLogicalOperator G h_exact code) (S : Finset V), L.xSupportOnE = vertexCut G SL.totalWeight (cleanedOperator L.toDeformedPauliOperator S).vertexWeight - S.card + (vertexCut G S).card) (h_trivial_in_logicals : L_trivlogicals, L_triv.totalWeight = code.d) :
      DeformedCodeDistance G h_exact code logicals h_nonempty = code.d

      Part 1 Main Result: When h(G) = 1, the deformed code distance exactly equals the original code distance: d* = d.

      This is the key optimality result. The equality follows from:

      • Lower bound: d* ≥ d from Lem_2 (every deformed logical has weight ≥ d)
      • Upper bound: d* ≤ d from the trivial extension (there exists a deformed logical of weight exactly d, namely the trivial extension of a minimum-weight original logical)

      The hypothesis h_trivial_in_logicals ensures the trivially extended operator is counted in the deformed code distance computation.

      Part 2: When h(G) > 1, no further improvement #

      A Cheeger constant larger than 1 does not further improve the distance bound. This is because min(h(G), 1) = 1 for h(G) ≥ 1.

      theorem QEC1.cheeger_gt_one_no_improvement {V : Type u_1} {E : Type u_2} {C : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq C] [Fintype V] [Fintype E] [Fintype C] (G : GraphWithCycles V E C) (h_exact : ExactnessCondition G) (hG : ) (hG_gt_1 : hG > 1) (code : OriginalCodeDistance V) (L : DeformedLogicalOperator G h_exact code) (h_cheeger_constant : ∀ (S : Finset V), S.Nonempty2 * S.card Fintype.card VhG (vertexCut G S).card / S.card) (h_weight_bound : ∀ (S : Finset V), L.xSupportOnE = vertexCut G SL.totalWeight (cleanedOperator L.toDeformedPauliOperator S).vertexWeight - S.card + (vertexCut G S).card) :

      When h(G) > 1, the bound is still d* ≥ d (not better)

      theorem QEC1.cheeger_above_one_is_capped (hG : ) (hG_ge_1 : hG 1) :

      The min(h(G), 1) formula explains why h(G) > 1 doesn't help: For any h(G) ≥ 1, the effective bound factor is 1.

      Mathematical reason: Logicals can be "cleaned" onto the original vertices by multiplying with A_v stabilizers. A logical supported only on original vertices (no edge qubits) has its weight unchanged from the original code.

      theorem QEC1.cheeger_ge_one_preserves_distance {V : Type u_1} {E : Type u_2} {C : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq C] [Fintype V] [Fintype E] [Fintype C] (G : GraphWithCycles V E C) (h_exact : ExactnessCondition G) (hG : ) (hG_ge_1 : hG 1) (code : OriginalCodeDistance V) (logicals : Set (DeformedLogicalOperator G h_exact code)) (h_nonempty : logicals.Nonempty) (h_cheeger_constant : ∀ (S : Finset V), S.Nonempty2 * S.card Fintype.card VhG (vertexCut G S).card / S.card) (h_weight_bound : ∀ (L : DeformedLogicalOperator G h_exact code) (S : Finset V), L.xSupportOnE = vertexCut G SL.totalWeight (cleanedOperator L.toDeformedPauliOperator S).vertexWeight - S.card + (vertexCut G S).card) :
      DeformedCodeDistance G h_exact code logicals h_nonempty code.d

      For all h(G) ≥ 1, the distance bound is d* ≥ d

      Part 3: When h(G) < 1, distance reduction occurs #

      A Cheeger constant smaller than 1 causes distance reduction by factor h(G). The bound becomes d* ≥ h(G) · d.

      theorem QEC1.cheeger_lt_one_distance_reduction {V : Type u_1} {E : Type u_2} {C : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq C] [Fintype V] [Fintype E] [Fintype C] (G : GraphWithCycles V E C) (h_exact : ExactnessCondition G) (hG : ) (hG_pos : 0 < hG) (hG_lt_1 : hG < 1) (code : OriginalCodeDistance V) (L : DeformedLogicalOperator G h_exact code) (h_cheeger_constant : ∀ (S : Finset V), S.Nonempty2 * S.card Fintype.card VhG (vertexCut G S).card / S.card) (h_weight_bound : ∀ (S : Finset V), L.xSupportOnE = vertexCut G SL.totalWeight (cleanedOperator L.toDeformedPauliOperator S).vertexWeight - S.card + (vertexCut G S).card) :
      L.totalWeight hG * code.d hG * code.d < code.d

      When h(G) < 1, the lower bound from Lem_2 gives d* ≥ h(G) · d

      theorem QEC1.cheeger_below_one_is_reduction_factor (hG : ) (hG_lt_1 : hG < 1) :

      The factor min(h(G), 1) equals h(G) when h(G) < 1

      theorem QEC1.cheeger_lt_one_bound {V : Type u_1} {E : Type u_2} {C : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq C] [Fintype V] [Fintype E] [Fintype C] (G : GraphWithCycles V E C) (h_exact : ExactnessCondition G) (hG : ) (hG_pos : 0 < hG) (hG_lt_1 : hG < 1) (code : OriginalCodeDistance V) (logicals : Set (DeformedLogicalOperator G h_exact code)) (h_nonempty : logicals.Nonempty) (h_cheeger_constant : ∀ (S : Finset V), S.Nonempty2 * S.card Fintype.card VhG (vertexCut G S).card / S.card) (h_weight_bound : ∀ (L : DeformedLogicalOperator G h_exact code) (S : Finset V), L.xSupportOnE = vertexCut G SL.totalWeight (cleanedOperator L.toDeformedPauliOperator S).vertexWeight - S.card + (vertexCut G S).card) :
      (DeformedCodeDistance G h_exact code logicals h_nonempty) hG * code.d

      For h(G) < 1, the distance is reduced: d* ≥ h(G) · d but potentially d* < d

      Main Optimality Theorem #

      Combining all three parts: h(G) = 1 is optimal.

      inductive QEC1.CheegerRegime (hG : ) :

      Classification of Cheeger constant regimes and their effect on code distance

      Instances For
        theorem QEC1.cheeger_regime_bound_factor (hG : ) (_hG_pos : 0 < hG) :
        (hG 1minCheegerOne hG = 1) (hG < 1minCheegerOne hG = hG)

        The effective distance bound factor depends on the Cheeger regime

        theorem QEC1.CheegerOptimality {V : Type u_1} {E : Type u_2} {C : Type u_3} [DecidableEq V] [DecidableEq E] [DecidableEq C] [Fintype V] [Fintype E] [Fintype C] (G : GraphWithCycles V E C) (h_exact : ExactnessCondition G) (hG : ) (hG_pos : 0 < hG) (code : OriginalCodeDistance V) (logicals : Set (DeformedLogicalOperator G h_exact code)) (h_nonempty : logicals.Nonempty) (h_cheeger_constant : ∀ (S : Finset V), S.Nonempty2 * S.card Fintype.card VhG (vertexCut G S).card / S.card) (h_weight_bound : ∀ (L : DeformedLogicalOperator G h_exact code) (S : Finset V), L.xSupportOnE = vertexCut G SL.totalWeight (cleanedOperator L.toDeformedPauliOperator S).vertexWeight - S.card + (vertexCut G S).card) :
        (hG 1DeformedCodeDistance G h_exact code logicals h_nonempty code.d) (hG < 1(DeformedCodeDistance G h_exact code logicals h_nonempty) hG * code.d) (DeformedCodeDistance G h_exact code logicals h_nonempty) minCheegerOne hG * code.d

        Main Optimality Theorem: h(G) = 1 is optimal for code distance preservation.

        1. When h(G) = 1: d* = d (no distance reduction)
        • Lower bound: d* ≥ min(1,1)·d = d (from Lem_2)
        • Upper bound: d* ≤ d (from trivial extension of original logical)
        1. When h(G) > 1: d* ≥ d (no improvement beyond d)
        • The min(h(G), 1) factor caps the bound at d
        • Increasing h(G) beyond 1 provides no additional benefit
        1. When h(G) < 1: d* ≥ h(G)·d (distance reduction by factor h(G))
        • The bound is reduced proportionally to the Cheeger constant

        Corollaries #

        @[simp]
        theorem QEC1.optimal_cheeger_is_one (hG : ) :
        hG > 0minCheegerOne hG 1

        Corollary: h(G) = 1 achieves the best possible distance guarantee

        @[simp]
        theorem QEC1.distance_factor_nonneg (hG : ) (hG_nonneg : 0 hG) :

        Corollary: The distance factor min(h(G), 1) is nonnegative

        @[simp]

        Corollary: For h(G) = 1, min(h(G), 1) = 1

        theorem QEC1.distance_bound_monotone_up_to_one (hG₁ hG₂ : ) (_h1 : 0 hG₁) (h2 : hG₁ hG₂) (h3 : hG₂ 1) :

        Corollary: The distance bound is monotonic in h(G) up to 1

        theorem QEC1.distance_bound_constant_above_one (hG₁ hG₂ : ) (h1 : 1 hG₁) (h2 : 1 hG₂) :

        Corollary: The distance bound is constant for h(G) ≥ 1

        theorem QEC1.cheeger_one_is_optimal_summary :
        minCheegerOne 1 = 1 (∀ hG > 1, minCheegerOne hG = 1) hG < 1, minCheegerOne hG = hG

        Summary: The Cheeger constant h(G) = 1 is optimal because:

        1. It achieves d* = d (maximum possible distance preservation)
        2. Higher values don't help (capped at factor 1)
        3. Lower values hurt (reduced by factor h(G))